Development and Validation of Mechanistic-Empirical Design Method for Permeable Interlocking Concrete Pavement

Hui Li, David Jones, Rongzong Wu, and John Harvey University of California Pavement Research Center David Smith Interlocking Concrete Pavement Institute

TRB 95th Annual Meeting. Jan 10th – 14th, 2016

- Introduction
- Test Track Design
- Test Track Construction
- Accelerated Load Testing
- Test Results
- M-E Design Procedure
- Conclusions

Introduction

- Interest in using permeable pavements in higher traffic applications
- Previous work by UCPRC
 - Preliminary Caltrans Study (2008 2010) on permeable concrete and asphalt pavements
 - No validation with traffic
- Validation study funded by industry
- Study objective
 - Develop mechanistic-based design method and tables for PICP

Introduction

- Study approach
 - Literature review
 - Field testing
 - Test track design
 - Test track construction
 - Accelerated load testing
 - Data Analysis
 - Design method & tool
 - Design tables
 - Final report
 - includes interim reports

<u>www.ucprc.ucdavis.edu/PDF/UCPRC-RR-2014-04.pdf</u>

December 2014 Research Report: UCPRC-RR-2014-04

Development and HVS Validation of Design Tables for Permeable Interlocking Concrete Pavement: Final Report

> Authors: H. Li, D. Jones, R. Wu, and J. Harvey

Concrete Masonry Association of California and Nevada. Grant Agreement UCPRC-PP-2011-01

PREPARED FOR:

Concrete Masonry Association of California and Nevada PREPARED BY:

University of California Pavement Research Center UC Davis, UC Berkeley

- Introduction
- Test Track Design
- Test Track Construction
- Accelerated Load Testing
- Test Results
- M-E Design Procedure
- Conclusions

Design Method

- Distress
 - Unbound layer rutting
- Approach
 - Shear stress to shear strength ratio (SSR) at top of layer
 - $0.3 \leq SSR \leq 0.7$
- Required inputs
 - Unbound layer stiffness, strength, and other mechanical properties
 - Obtained from lab and field testing

hear Stress Ratio (SSR) = $\frac{\tau_f}{\tau_{max}}$	(1)
$f = \frac{\sigma_1 - \sigma_3}{2} \cos\phi = \frac{\sigma_d}{2} \cos\phi$	(2)
$hax = c + \sigma_f tan\phi$	(3)
$= \frac{\sigma_1 + \sigma_3}{\sigma_1 - \sigma_3} - \frac{\sigma_1 - \sigma_3}{\sigma_1 - \sigma_3} \sin \phi = \frac{\sigma_d + 2\sigma_3}{\sigma_d} - \frac{\sigma_d}{\sigma_d} \sin \phi$	(4)

Where: τ_{max} is applied shear stress acting on the failure plane oriented at an angle of $45^\circ + \phi/2$ σ_f is applied normal stress acting on the failure plane oriented at an angle of $45^\circ + \phi/2$ τ_f is shear strength of the material under a certain stress state σ_1 and σ_3 are the major and minor principal stresses, respectively σ_d is the deviator stress, $\sigma_d = \sigma_1 - \sigma_3$ c is the cohesion of the material ϕ is the internal friction angle of the material ($\phi = 0$ for stress-independent materials)

Design – Subbase Thickness

Subbase	Shear Stress	Calculat	A c		
Thickness	Ratio (SSR)	Dry	Wet	Built	
Thin	0.8	450	650	450	
Medium	0.5	800	950	650	
Thick	0.2	1,350	1,450	950	

Surface

80 mm interlocking concrete paver Bedding layer 50 mm ASTM #8 aggregate Base layer 100 mm ASTM #57 aggregate Subbase layer Varying thickness ASTM #2 aggregate Subgrade soil Silty clay, compacted after excavation

Design

- Introduction
- Test Track Design
- Test Track Construction
- Accelerated Load Testing
- Test Results
- M-E Design Procedure
- Conclusions

UCPRC Facility

Test Track Construction

Test Track Construction

Instrumentation

- Aggregate size limited options
- Stress (pressure cell)
 - Top of base
 - Top of subgrade

- Deformation (profiler + dipsticks)
 - Surface
 - Top of base
 - Top of subgrade
- Deflection (RSD)
- Water level
 - Manual and automated

- Introduction
- Test Track Design
- Test Track Construction
- Accelerated Load Testing
- Test Results
- M-E Design Procedure
- Conclusions

APT – Test Program

F

- Extended HVS (13m) used to test all sub sections together
 - Bidirectional trafficking with wander

APT - Wet Testing

- Introduction
- Test Track Design
- Test Track Construction
- Accelerated Load Testing
- Test Results
- M-E Design Procedure
- Conclusions

APT – Visual Assessment

APT - Total Surface Rut

APT – Down Rut: 450mm Subbase

APT – Down Rut: 950mm Subbase

APT – General Observations

- Significant difference in wet and dry testing
- Wet test rutting was in both subbase and subgrade
 - Thickness design to prevent rutting in subgrade
 - Subbase aggregate properties and construction quality are critical to minimize subbase rutting

- Introduction
- Test Track Design
- Test Track Construction
- Accelerated Load Testing
- Test Results
- M-E Design Procedure
- Conclusions

M-E Design Procedure

- Design procedure and parameters adjusted from initial design based on actual test track values
- Rut models developed for each layer
- Partial validation of rut models using APT data
 - Analyzed with OpenPave software
- Design tool developed (*Excel*[®] spreadsheet)
 - Number of days with water in the subbase
 - Material properties
 - Traffic and load spectra
- Tool used to validate ICPI design tables
 - Less conservative than current ICPI for dry conditions
 - Slightly more conservative for very wet conditions UCPRC

Rut Models for Different Layers

TABLE 1 Summary of Rut Models Developed for Different Layers in a PICP

Lavon	Dut Model ¹	Moisture	Model Parameters								
Layer	Kut Widdel	Condition	a	b	с						
Combined hedding and have	$PD = a \times b SD + b$	Dry	0	4.0	-						
Combined bedding and base	$RD_{BB} - a \wedge n_SB + b$	Wet	-0.012	13.1	-						
Subbasa	$PD = (a \times SSP^b) \times N^c$	Dry	3.10E-06	2.70	1						
Subbase	$KD_{SB} = (d \land SSK) \land N$	Wet	3.10E-06	2.70	1						
Subgrada (Silty alay)	$PD = (a \times SSP + b) \times N^{c}$	Dry	0.03	-0.01	0.5						
Subgrade (Sifty clay)	$RD_{SG} = (d \land SSR + b) \land N$	Wet	0.03	-0.01	0.5						
¹ DD and look of an lower (DD-method (normal holding on the ex), SD-methods (Co-method hold), many											

RDxx, rut depth of xx layer (BB=surface(paver, bedding and base); SB=subbase; SG=subgrade), mm;

h_SB, thickness of subbase, mm;

SSR, shear stress/strength ratio at the top of the layer;

N, load repetition;

a, *b*, *c*, model constants.

Input Parameters for M-E Design

TABLE 2 Summary of Inputs for Performance Modeling and M-E Design of PICP

Variable		Surface, Combined (Payer, bedding & base)				Subba	Subgrade						
		Thickness (mm)	Stiffness (MPa ¹)	T	hickness (mm)	ckness Stiffne nm) (MPa)		<i>с, ф</i> (kРа, °)	Stiffness (MPa)	<i>с, ф</i> (kPa, °)			
Pavement	Label	h1	E1		h2	E2		E2		с, ф	E3	с, ф	
Structure and Materials	Value	230	110 (dry) 87 (wet)	(45	Varying 0 default)	122 (d 73 (w	lry) ret)	0, 45 (dry) 0, 30 (wet)	60 (dry) 37 (wet)	15, 25 (dry) 9, 15 (wet)			
	Variable	Wet Days ²	² Number of days in a calendar year when the subbase has standing water										
Climate	Label	W											
	Value	50											
	Variable	Axle	Axle Load ²	Axle Load ² Stress ² The total truck traffic volume was		vas divided							
		Туре	(kN^3)	Loca		Locati		ion	into different axle loads according to an axle-				
Traffic	Label	AT	AL		SL	SL 1		load distribution factor. Group 1 WIM truck					
	Value	Single (S)	10 to 160 (S)	Under W	Vheel tra		traffic data from California was used as the					
		Tandem (T)	20 to 200 (T)		Between Wheel		de	default axle-load distribution factor.					
¹ 1,000 psi -	= 6.890 MPa		3 1,000 lb = 4.4	48 kl	N								

Validation of M-E Design Method

M-E Design Tool for PICP

PICP Design Tool

	Layer		Moisture Condition	Thickness (mm)	Stiffness (MPa) ¹	Poisson's Ratio	c (kPa)	φ()					
	Surface (80 mm concrete paver plus		Wet		87	0.35	-	-					
	Structure &	50 mm #8 bedding and 100 mm #57 base)	D	230	110	0.25							
	Materials		Dry		110	0.35	-	-					
		Subbase (ASTM #2)	Wet	150	73	0.35	0	30					
			Dry		122	0.35	0	45					
		Subgrade (Clay)	Drv	-	60	0.35	15	25					
		Number of Days in a Year When the	1. The wet stiffness to d	ry stiffness ratio can b	be assumed as 0.8, 0	.6 and 0.6 for surfa	ce, subbase and	subgrade layer	ely.				
		Subbase has Standing Water (Wet	2. Seasons when the sub	base has standing wa	ter.			0 1	, 1				
	Climate	Days) ²	······································										
		20											
					Axle-Load		Lifetime Repet	tition		Lifetime			
		Traffic Volume Calculation	Axie Type	Axie Load (KN)	Distribution (%)	Wet Season ²	Dry Season	Total	ESALs	ESALS (Millions)			
		AADT (two-way)		10	3.25	89	1,538	1,627	0	(minons)			
		250	1	20	5.97	164	2,823	2,987	12				
Innut		Percent Trucks, T		30	5.83	160	2,756	2,916	58				
Input		5.0%		40	4.43	121	2,095	2,217	139				
	Traffic	Direction Distribution Factor, D		50	3.23	89	1,528	1,617	247				
		0.5	Single	60	2.80	77	1,324	1,401	443				
		Lane Distribution Factor, L	Single	70	3.13	86	1,481	1,567	919				
		0.9		80	2.40	66	1,137	1,203	1,203				
		Annual Growth Rate, r		90	0.85	23	400	424	679				
		2.0%		100	0.15	4	69	73	177				
		Design Life (years), Y		120	0.03	1	15	15	78	0.01			
		20		160	0.01	0	5	5	80	0.01			
		Traffic Days (days/year), TD		20	1.59	44	755	798	0				
		365		40	5.79	159	2,738	2,897	23				
		Traffic Safety Factor, TSF		60	6.76	186	3,201	3,386	134				
		1.0 Truck Traffic Volume V		80	4.48	123	2,118	2,241	280				
		Fruck Traffic Volume, V	Tandem	120	3.42	94	1,017	1,711	1 221				
		30,055		140	4 12	112	1,024	2,062	2 410				
		$V = AADT \times T \times D \times L \times (1+r)^{Y2}$		140	1.94	53	918	2,065	2,419				
		$\times Y \times TD \times TSF$		180	0.29	8	139	147	471				
				200	0.05	1	24	25	123				
					D-4 D. (1)	Free states Track	4.0						
		Layer	Moisture Condition	Shift Factor	Layer (mm)	Rut Depth (mm)	Depth (mm)	Satisfactory ?					
		Surface (80 mm concrete paver plus 50 mm #8 bedding and 100 mm #57	Wet	1.30	0.8								
Outcome	Rut Depth	base)	Dry	1.10	4.2								
		S-11 (ASTM #2)	Wet	1.30	0.8	230	25 0	\mathbf{V}					
		Subbase (AS 11/1 #2)	Dry	1.10	9.2	20.0		4					
		Subgrade (Clav)	Wet	1.30	2.8								
		Subgraue (Clay)	Dry	1.10	5.2								
		Calculate Ru	Depth	Desig	n Subbas	eInickn	ess						

Example Design Tables

Number of Days in a Year When the Subbase has Standing Water (Wet Days)		0				10				30			
Resilient Modulus of Subgrade (ksi)	Dry	5.8	8.7	11.6	14.5	5.8	8.7	11.6	14.5	5.8	8.7	11.6	14.5
	Wet	3.5	5.2	6.7	8.7	3.5	5.2	6.7	8.7	3.5	5.2	6.7	8.7
Cohesion (psi), Internal Friction	Dry	1.5, 20	2.2, 25	2.9, 30	3.6, 35	1.5, 20	2.2, 25	2.9, 30	3.6, 35	1.5, 20	2.2, 25	2.9, 30	3.6, 35
Angle of Subgrade (°) ¹	Wet	0.9, 12	1.3, 15	1.7, 22	2.2, 25	0.9, 12	1.3, 15	1.7, 22	2.2, 25	0.9, 12	1.3, 15	1.7, 22	2.2, 25
Lifetime ESALs (Traffic Index)		Minimum Subbase Thickness in inches ² ASTM #2 for 1 in. Allowable Rut Depth (All designs have 3.2 in. Paver, 2 in. ASTM #8 Bedding Layer, & 4 in. ASTM #57 Base Layer)											
50,000 (6.3)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
100,000 (6.8)		6.0	6.0	6.0	6.0	8.5	6.0	6.0	6.0	10.5	6.0	6.0	6.0
200,000 (7.4)		9.0	6.0	6.0	6.0	12.5	8.5	6.0	6.0	14.5	10.0	6.5	6.0
300,000 (7.8)		11.5	7.0	6.0	6.0	15.0	10.5	7.0	6.0	17.0	12.5	8.5	6.0
400,000 (8.1)		13.0	9.0	6.0	6.0	17.0	12.0	8.5	6.0	19.0	14.0	10.0	7.0
500,000 (8.3)		14.5	10.0	6.5	6.0	18.0	13.5	9.5	6.5	20.0	15.0	11.0	8.0
600,000 (8.5)		15.5	11.0	7.5	6.0	19.0	14.5	10.5	7.0	21.0	16.0	12.0	9.0
700,000 (8.6)		16.5	12.0	8.0	6.0	20.0	15.0	11.0	8.0	22.0	17.0	13.0	10.0
800,000 (8.8)		17.0	12.5	9.0	6.0	20.5	16.0	12.0	8.5	22.5	17.5	13.5	10.5
900,000 (8.9)		17.5	13.0	9.5	6.0	21.0	16.5	12.5	9.0	23.5	18.0	14.0	11.0
1,000,000 (9.0)		18.0	13.5	10.0	6.5	22.0	17.0	13.0	9.5	24.0	19.0	14.5	11.5

¹ Default values based on testing cited in the literature (10,12)

² Subbase thickness calculated by dividing metric thickness by 25 and then rounding to nearest 0.5 in.

- Introduction
- Test Track Design
- Test Track Construction
- Accelerated Load Testing
- Test Results
- M-E Design Procedure
- Conclusions

Conclusions

- Shear stress to shear strength ratio (SSR) approach is appropriate for permeable pavement design
- Subgrade rutting dependent on subbase thickness
 Design for wet conditions
- Subbase thickness does not prevent subbase rutting
 - Rutting depends on aggregate properties and construction quality
 - Pervious concrete subbase below aggregate subbase can be considered to compensate for this
- Mechanistic-Empirical design tool and revised design catalogue has been developed and partially validated.

Thank-you

hili@ucdavis.edu

www.ucprc.ucdavis.edu

